Willkommen in der Retro-Elektronikwelt!

AM-Empfänger für 29 MHz mit dem TCA440

Bekanntermaßen eignet sich der integrierte Schaltkreis TCA440 nicht nur für AM-Rundfunkempfänger für Mittel- und Langwellen, sondern auch für Empfängerschaltungen für Frequenzen bis oberhalb des Kurzwellen-Gebietes. Außerdem kann der Oszillatorteil mit geringem Aufwand für quarzgesteuerten Betrieb beschaltet werden. Für den Einsatz in Empfängern für die Modellfernsteuerung wurden daher vielfach Schaltungen veröffentlicht, für die hier ein Beispiel gezeigt ist.

Für die Fersteuerung von Modellen kommt es auf keine großen Reichweiten an, so dass das Signal des Senders beim Empfänger immer mit recht großer Feldstärke eintrifft. Es sind daher geringere Ansprüche bezüglich Empfindlichkeit und Selektion zu erfüllen. Die im 27-MHz-Gebiet für Fernsteuerzwecke verwendeten Frequenzen liegen üblicherweise in einem Abstand von 50 kHz. Um etwa bei einem Wettbewerb mehrere Modelle gleichzeitig betreiben zu können, müssen daher auch bezüglich der Nahselektion keine allzu großen Erwartungen erfüllt werden. Eine solche Schaltung führt für derartige Anwendungen also zu sehr brauchbaren Ergebnissen.

Eine völlig andere Situation ergibt sich, wenn der Empfänger in einem Sprechfunkgerät verwendet werden soll. Hier muss folgendes bedacht werden:

Ich habe die gezeigte Schaltung daher in dieser Hinsicht an verschiedenen Stellen in der nachfolgend beschriebenen Weise optimiert.

Verbesserung der Spiegelselektion

Um mit einem Einfachsuperhet mit einer niedrigen ZF von 455 kHz oberhalb von 20 MHz eine einigermaßen brauchbare Spiegelselektion zu erzielen, reicht ein Einzelkreis für die Filterung im Empfängereingang keinesfalls aus. Bei entsprechend konzipierten AM-Funksprechgeräten konnten früher bei guten Ausbreitungsbedingungen Störungen durch starke Sender aus dem 11m-Rundfunkbereich beobachtet werden. Manch einer nahm an, es handele sich um mutwillige Störungen von ausländischen Sprechfunkstationen. Tatsächlich war hier aber der Spiegelfrequenz-Empfang das Problem. Aufgrund der deutlich reduzierten Anzahl von AM-Rundfunkstationen ist hiermit heute eher weniger zu rechnen. Soll aber ein solcher Empfanger im 10m-Amateurband betrieben werden, darf dieses Problem nicht unterschätzt werden. Zum Empfang der heute üblicherweise für AM verwendeten Frequenzen bei 29 MHz fallen die Spiegelfrequenzen mit den gewöhnlich unterhalb der Empfangsfrequenz schwingenden Quarzen in einen Bereich bei etwas über 28 MHz. Gerade hier gibt es bei guten Bedingungen viel Aktivität (CW, Digimodes). Es gibt aber die Möglichkeit, den Oszillator oberhalb der Empfangsfrequenz schwingen zu lassen, womit die Spiegelfrequenzen auf knapp 30 MHz verlagert werden. Doch hunderprozentig kann man auch hier nicht vor Störungen sicher sein. Außerdem ist es die bessere Lösung, den Empfang von Spiegelfrequenzen durch schaltungstechnische Maßnahmen von vornherein zu unterbinden. Hierzu wird mindestens ein zweikreisiges Bandfilter hoher Güte benötigt, welches im verbesserten Empfänger zu finden ist. Würde man das Antennensignal diesem Filter jedoch z.B. über eine Koppelwicklung direkt zuführen, so würde sich bei Anpassung und Abgleich auf beste Empfindlichkeit des Empfängers die Filtergüte infolge der Bedämpfung durch die Antenne deutlich verschlechtern.

Optimierung durch HF-Vorstufe

Die Bedämfung durch die Antenne lässt sich durch eine HF-Vorstufe reduzieren. Sofern ein hinreichend rauscharmes Verstärkerelement verwendet wird, steigert sie außerdem die Eingangsempfindlichkeit des Empfängers. Dies wird durch eine in Basisschaltung betriebene Vorstufe mit einem für UKW-Tunerschaltungen entwickelten Transistor erreicht. Die Vorstufe sollte nicht zu viel Verstärkung aufweisen, da sonst die guten Großsignal-Eigenschaften des Gegentaktmischers im TCA440 verloren gingen. Der eingangsseitige Kreis ist breitbandig ausgelegt. Er wird nicht auf maximale Signalspannung eingestellt, sondern ist auf optimale Rauschanpassung an die Antenne abzugleichen. Der hochohmige Kollektorkreis der Vorstufe bedämpft das darauf folgende Zweikreis-Bandfilter nur wenig. Infolgedessen können mit dem Bandfilter auf der Spiegelfrequenz auftretende Signale wirkungsvoll unterdrückt werden.

Der modifizierte Quarz-Oszillator

Beim TCA440 wird der Quarz-Oszillator in einer für normale Obertonquarze eigentlich nicht vorgesehenen Weise betrieben. Mit verschiedenen CB-Quarzen zeigte sich, dass die Schaltung mit sehr unterschiedlicher Amplitude schwingt. Oft ist für verschiedene Quarze ein vollkommen anderer Abgleich der Oszillator-Spule nötig. Für einen Empfänger, der für mehrere Kanäle umgeschaltet werden soll, führt das zu Problemen. Außerdem schwangen manche Quarze in dieser Schaltung sogar gar nicht an. Durch eine kleine Schaltungs-Modifikation, bei welcher der Quarz über einen kapazitiven Spannungsteiler (68pF, 150pF) an den Oszillatorkreis gekoppelt ist, ließ sich die beschriebene Schwierigkeit weitgehend aus dem Weg räumen. Die Königslösung wäre sicher ein externer Oszillator, welcher aber den Schaltungsaufwand nochmals vergrößern würde.

Umgestaltung der ZF-Filterung

Man könnte meinen, dass das für Rundfunkzwecke vorgesehene Keramik-Filter vom Typ SFD-455 für Sprechfunk eine ausreichende Selektivität aufweist. Schließlich wird beim LW- und MW-Rundfunk ein Frequenzraster von 9 kHz verwendet, auf Kurzwellen beträgt der Kanalabstand sogar nur 5 kHz. Trotz dem beim AM-Sprechfunk im 10m- und 11m-Band benutzten etwas größeren Kanalabstand von 10 kHz trifft das aber nicht zu. Zwar ist das SFD-455 hinreichend schmalbandig, es weist aber eine ungenügende Nachbarkanal-Dämpfung auf. Bei Radiogeräten sind die diesbezüglichen Qualitätsansprüche eben niedriger. Man sollte daher mindestens die für AM-Sprechfunkgeräte gedachten Filter des Typs CFU455HT oder LF-B6 verwenden. Das ansonsten hervorragend funktionierende CB-Stationsgerät ASH-2012F von Fieldmaster verwendete tatsächlich im Empfänger ein SFD-455. Als Folge davon sind stärkere Stationen, die ein oder zwei Kanäle oberhalb bzw. unterhalb der Betriebsfrequenz arbeiten, zwar mit vermindertem S-Wert, aber dennoch klar und deutlich zu hören. Unter den gleichen Bedingungen erzeugen solche Stationen bei Verwendung eines CFU455HT oder eines LF-B6 allenfalls Splatter, bringen aber keinen S-Meter-Ausschlag und sind nicht mehr verständlich zu hören. Jene Filter weisen eben eine deutlich bessere Flankensteilheit auf.

Bei der Umgestaltung der ZF-Filterung konnte zugleich auch das bekanntermaßen recht starke Eigenrauschen des ZF-Verstärkers vom TCA440 reduziert werden. Solange kein Empfangssignal vorhanden ist und die AGC folglich nicht herunterregelt, führt zwar die hohe Verstärkung des TCA440 zwangsläufig zu einem recht satten Leerrauschen. Dieses sollte jedoch idealerweise nicht vom ZF-Verstärker selbst kommen. Durch Einfügen eines zusätzlichen ZF-Filters zwischen Keramik-Filter und dem Eingang des ZF-Verstärkers verbessert sich einerseits nochmals die Selektivität, andererseits wird so an seinem Eingang weniger Eigenrauschen produziert. Außerdem konnte damit ein Problem gelöst werden, das selbst bei vielen käuflichen, mit dem TCA440 arbeitenden Geräten beobachtet werden kann: oft zeigt das S-Meter schon ohne Signal einen Zeigerausschlag. Nach genauerer Untersuchung zeigte sich, dass dies nicht mit den Gleichstrom-Arbeitspunkten des AGC-Verstärkers zu tun hat. Vielmehr strahlt in vielen Schaltungen das Oszillatorsignal unmmittelbar in den Eingang des ZF-Verstärkers ein, so dass die AGC bereits ohne vorhandenes Signal zu arbeiten beginnt. Man kann sich selbst davon überzeugen, wenn man die selbe Schaltung mit zwei TCA440 aufbaut, von denen man bei dem einen nur die Eingangsschaltung und von dem anderen nur den ZF-Teil verwendet. Dieses Problem ist sonst nur durch einen geeigneten Aufbau, idealerweise mit einer Platine mit durchgehender Massefläche auf der Oberseite, in den Griff zu bekommen. Durch die bessere Anpassung des Keramikfilters über Koppelwicklung und Anzapfung des zusätzlichen LC-Filters konnte dieser Effekt nun auch ohne solche Maßnahmen beseitigt werden. Eine entsprechende Anordnung am Ausgang des ZF-Verstärkers reduziert nochmals das breitbandige Rausschspektrum, welches der ZF-Verstärkerausgang dem Demodulator sonst liefert. Außerdem kann nun auch für die Empfängerschaltung mit dem TCA440 der früher in vielen Radio- und Funkgeräten übliche und aus den Toko-LC-Filtern mit den Kernfarben gelb, weiß und schwarz bestehende Standardfiltersatz eingesetzt werden. Der Empfänger verlor durch diese Maßnahmen in keiner Weise an Empfindlichkeit. Die Änderungen wirkten sich insgesamt positiv auf die Eigenschaften der Empfängerschaltung aus.

Allgemeine Hinweise

Wie im Schaltbild ersichtlich, lässt sich zur Ansteuerung einer Rauschsperre das an Pin 10 anliegende Signal verwenden, an dem auch das S-Meter angeschlossen ist. Anstelle des TCA 440 lässt sich auch der mitunter noch erhältliche A244D verwenden, welcher in der DDR bzw. in Osteuropa gefertigt wurde. Nicht von Siemens hergestellte Exemplare waren mit diesem häufig identisch und wurden für den westeuropäischen Markt lediglich als TCA440 gestempelt. Auch das russische IC K174XA2 kann anstelle des TCA440 verwendet werden.


Dies ist meine private Webpräsenz rund um die Themen Amateurfunk, Musikelektronik, Geräte-Selbstbau und Technik-Geschichte. Für eine über die persönliche Information hinausgehende Verwendung der Inhalte, insbesondere der Texte, Zeichnungen, Schaltpläne, Fotos, Videos und Musik, bedarf es meiner schriftlichen Genehmigung!